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Abstract— The impact of the sampling period on the 

parameterization of a digital PID controller in the frequency 

domain is attempted using three different digital approximations 

of the integral action. The controller is implemented in the 

industrial process of regulation of the cement sulphates in the 

cement mill outlet. The maximum sensitivity, Ms, has been 

utilized as a main robustness criterion. For the same Ms, 

proportional and differential gain, a rise of the sampling period 

leads to a decrease of the integral gain ki for all the three 

approximations. For the same sampling period, the function 

between proportional and integral gain differs for the three 

approximations studied. If the design satisfies two criteria 

simultaneously, maximum sensitivity and phase margin in the 

current study, then the permissible PID gains zone becomes 

narrower. 

Keywords—digital PID; sampling; frequency; cement; 

robustness 

I.  INTRODUCTION  

Digital controllers are implemented nowadays in numerous 
applications in order to provide feedback control on a 
continuous time process, whose outputs are sampled in discrete 
time instances. As it has been noticed by Astrom et al. [1] in 
the industrial process control the PID type controllers 
constitute a percentage more than 95% of the installed ones. 
Thus, the study of the discrete PID controllers remains a 
challenging field of research due to its large field of 
application. Various techniques have been developed for the 
design of digital controllers. The first attempt to analyse and 
design discrete time control systems was described in a paper 
by Kalman [2]. Madsen et al. [3] refers two main approaches 
for designing a digital controller: The direct sampled – data 
approach and a second one called digital redesign. The 
redesign method involves an initial development of an analog 
controller meeting the system requirements. Then this 
controller is transformed to a digital one through a series of 
redesign procedures. Seborg et al. [4] describes two basic 
methodologies for digital controller design: The direct 
synthesis ( Dahlin’s method, Vogel – Edgar algorithm, internal 
model control) and minimum variance control. Das et al. [5] 
has been utilized the continuous and discrete time Linear 
Quadratic Regulator (LQR) theory in designing of optimal 
analog and discrete PID controllers. Yousefzadeh et al. [6] after 

an initial design in the frequency domain of an analog PID, 
then applies the pole-zero mapping method to tune its digital 
form. Peretz et al. [7] refers that the most popular approach in 
designing digital compensators is the frequency domain based 
method. Okuyama [8] has been presented a designing problem 
of discrete-time PID algorithm solved in the frequency domain. 
During the procedure, a modified Nichols diagram is applied. 
Papadopoulos et al. [9] utilized also the frequency domain to 
describe a general process model. Then the transition to the z 
domain in conjunction with a symmetrical optimum criterion 
has been implemented to generate tuning rules of digital PID 
controllers for integrating processes. 

This study aims at investigating of the parameterization of a 
digital PID controller in the frequency domain by applying it to 
an actual industrial process of high importance as concerns the 
quality of the manufactured goods: The regulation of the 
cement sulphates in the cement mill outlet. Due to the 
significance of the sampling period in the controller design, an 
extensive search has been attempted to be carried out. 

II. PROCESS MODEL 

The SO3 control and regulation is performed by sampling 
cement in the mill outlet, measuring the sulphates and changing 
the gypsum percentage in the cement composition. Gypsum is 
the main source of SO3. Another source is the clinker which 
constitutes the main cement component and the fly ash also in 
the case of pozzolanic cements.  

 

Fig.1. Block diagram of the SO3 regulation feedback loop. 
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The variation of the SO3 content of the raw materials 
represents disturbances that have to be eliminated. The block 
diagram and the transfer functions of the SO3 regulation 
process are shown in Figure 1. The blocks represent the 
subsequent sub-processes: GP = mixing of materials inside the 
milling installation; GS = cement sampling; GM = SO3 
measurement; GC = control law. The signals of the feedback 
loop are denoted with the following symbols: %G, %CL, %FA 
= the percentage of gypsum, clinker and fly ash respectively. 
%SO3 = the cement sulphates. %SO3_S, %SO3_M = SO3 of 
the sampled and measured cement correspondingly.  %SO3_T 
= sulphates target. e = %SO3_T - %SO3_M is the error of the 
regulation.  d = the feeders disturbances. n = noise of the SO3 
measurement. The scheme shown in Figure 1 comprises all the 
basic components of the feedback control loop.  

A. Transfer Functions of the Control Loop 

To model the control loop, the transfer functions and their 
Laplace transform has been considered. The determination of 
the dynamics between the gypsum content of the material fed 
to the mill and the SO3 of the cement in the mill circuit outlet 
has been achieved with a step response test in an actual closed 
circuit cement mill. A first order with time delay (FOTD) 
model describes this dynamics which constitutes the process 
transfer function GP. The Laplace transform of this model is 
given by equation (1): 

𝐺𝑃 =
%𝑆𝑂3

%𝐺
=

𝑘𝑔 ∙ exp(−𝑇𝐷 ∙ 𝑠)

1 + 𝑇0 ∙ 𝑠
                                           (1) 

    

Where kg = the dynamics gain (%SO3/%Gypsum), TD, T0 = 

the delay time and first order time constant respectively (min). 

During the sampling period an average sample is collected. 

Thus, the variables %SO3 and %SO3_S in the time domain are 

connected with the relation (2): 

%𝑆𝑂3_𝑆 𝑡 =
1

𝑇𝑠
 %𝑆𝑂3 𝑑𝑡

𝑡+𝑇𝑠

𝑡

                                            (2) 

The Laplace transform of (2) is given by (3): 

𝐺𝑆 =
%𝑆𝑂3 _𝑆

%𝑆𝑂3
=

1

𝑇𝑠 ∙ 𝑠
 1 − 𝑒−𝑇𝑠𝑠                                         (3) 

 Where Ts = the sampling period (min). The sample transfer 
from the sampling point to the quality laboratory, the 
measurement procedure of SO3, the calculation of the new 
gypsum content and its transfer to the mill feeder lasts TM 
minutes. This delay is expressed by (4).  

𝐺𝑀 =
%𝑆𝑂3 _𝑀

%𝑆𝑂3 _𝑆
= 𝑒−𝑇𝑀 𝑠                                                            (4) 

The PID controller has as input the measured values of 
SO3, %SO3_M and produces the new percentage of gypsum, 
%G. Its analog implementation is described by (5): 

%𝐺 𝑡 = 𝑘𝑝 ∙ 𝑒 + 𝑘𝑖  𝑒𝑑𝑡

𝑡

0

+ 𝑘𝑑

𝑑𝑒

𝑑𝑡
                                        (5) 

Where kp, ki, kd are the proportional, integral and derivative 
gain of the controller respectively. To derive an expression for 
the digital form of the controller, the analog formula is used in 
the instances t = k∙Ts and t = (k-1) ∙ Ts where k is an integer. By 
subtracting the two equations the digital expression of PID is 
derived, described by (6) in time domain. Its Laplace transform 
is given by (7). For comparison reasons the Laplace form of the 
analog PID is provided also by the formula (8). 

%𝐺𝑘 − %𝐺𝑘−1 = 𝑘𝑝 𝑒𝑘 − 𝑒𝑘−1 + 𝑘𝑖𝑒𝑘𝑇𝑠

+
𝑘𝑑

𝑇𝑠
 𝑒𝑘 + 𝑒𝑘−2 − 2𝑒𝑘                               (6) 

𝐺𝐶 =
%𝐺

𝑒
= 𝑘𝑝 +

𝑘𝑖 ∙ 𝑇𝑠
1 − 𝑒𝑥𝑝 −𝑇𝑠 ∙ 𝑠 

+
𝑘𝑑

𝑇𝑠
∙  1 − 𝑒𝑥𝑝 −𝑇𝑠 ∙ 𝑠                                       (7) 

𝐺𝐶 =
%𝐺

𝑒
= 𝑘𝑝 +

𝑘𝑖

𝑠
+ 𝑘𝑑 ∙ 𝑠                                                     (8) 

Probably the best criterion of robustness is the sensitivity 
function determined by the Laplace equation (9): 

𝑆 =
1

1 + 𝐺𝐶 ∙ 𝐺𝑃 ∙ 𝐺𝑆 ∙ 𝐺𝑀
                                                         (9) 

The variable 1/Ms can be interpreted as the shortest distance 
between the open loop Nyquist curve and the critical point (-
1,0) shown in the Figure 2. In the same figure other system 
properties, characterizing the system stability are also shown: 

- The gain margin, gm 

- The gain crossover frequency, ωgc 

- The phase margin, φm 

- The sensitivity crossover frequency, ωsc 

- The maximum sensitivity crossover frequency, ωmc. 

 

Figure 2. Maximum sensitivity, phase margin and crossover frequencies 
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Analog PID, kd=0, Ts=1 min 

 

Digital PID, kd=0, Ts=1 min 

 

Digital PID, kd=0, Ts=10 min 

 

Digital PID, kd=0, Ts=20 min 

Figure 3. Maximum sensitivity as function of kp, ki and Ts for analog and digital PID implementation 

 

III. RESULTS AND DISCUSSION 

To investigate the performance of the digital PID in the 
regulation of the given process, for different values of kd in 
%G/%SO3∙min, the subsequent area of the other two 
parameters has been selected: 0 ≤ kp ≤ 1 in %G/%SO3, 
0.01≤ki≤0.046 in %G/%SO3/min. The process parameters are 
the following: kg=0.42 %G/%SO3, T0=14 min, TD=8 min, 
TM=20 min. The sampling period Ts is a variable under 
investigation.  

A. Comparisons of Analog and Digital PID 

Initially the performances of analog and digital controllers 

are compared using Ms as a criterion. For kd=0, the maximum 

sensitivity as a function of kp, ki for analog and digital 

controllers is shown in Figure 3.   For fast sampling frequency, 

Ts=1 min, the performance of both implementations is the 

same. As the sampling period augments for the same pair (kp, 

ki) the Ms of digital controller increases too. The above result is 

very significant: The tuning of a digital PID by using its analog 

implementation and fast sampling period, leads to an 

inaccurate Ms if the actual sampling period applied in the 

process is high enough. 

To study the impact of the sampling period on the digital 
controller performance for various (kp, ki, kd) sets the next 
procedure has been followed: (i) Two sets (kp, ki)1=(0.5, 0.031) 
and (kp, ki)2=(0.2, 0.04) have been selected; (ii) a fast sampling 
period Ts=1 min and then periods from 10 to 120 min with a 
step of 10 min; (iii) derivative gains from 0 to 5 with a step of 
1; (iv) The Ms values have been computed. The results are 
shown in Figures 4 and 5. As Ts increases, Ms increases too, by 
tending in an asymptotic value for each kd. The impact of kd is 
not in one direction: for lower Ts an increase of kd causes a 
decrease of Ms, while for high values of Ts, the relation 
between kd and Ms is the reverse. 

 

Figure 4. Maximum sensitivity as function of Ts, kd for (kp,ki)=(0.5, 0.031) 
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Figure 5. Maximum sensitivity as function of Ts, kd for (kp,ki)=(0.2, 0.04) 

B. Digital PID Design Satisfying One Criterion 

To investigate the impact of the sampling period on the 
digital PID design, the maximum sensitivity has been selected 
as the criterion. The requirement placed in the design is 
1.45≤Ms≤1.55. PID sets satisfying this constraint have been 
determined for sampling periods ranging from 1 min to 120 
min. The PID regions for kd = 0, 2, 4 are shown in Figures 6, 7, 
8 respectively.  

 

Figure 6. Plots of (kp, ki) for Ms є [1.45,1.55], various Ts and kd=0. 

 

Figure 7. Plots of (kp, ki) for Ms є [1.45,1.55], various Ts and kd=2. 

From these Figures the following conclusions can be 
extracted: 

 The magnitude of Ts has strong function on the sets (kp, 
ki, kd) deriving Ms є [1.45, 1.55]. Generally, when Ts 
increases, for the same kp, kd, the integral gain is 
moving to lower values. 

 For small sampling period – Ts=1min- for the same 
proportional gain, when kd increases, the integral gain 
increases too. The reverse happens to Ts=30 min 

 For higher sampling periods, there is negligible impact 
of the differential gain on the function between kp, ki. 

 

Figure 8. Plots of (kp, ki) for Ms є [1.45,1.55], various Ts and kd=4. 

 

C.  Digital PID Design Satisfying Two Criteria 

In this case two criteria of performance and robustness have 
been combined: (a) The maximum sensitivity Ms and (b) the 
phase margin φm. The design is applied for kd=0, 
1.45≤Ms≤1.55 and 60°≤ φm≤70°. As in the previous case, Ts 
varied from 30 min to 120 min. The design is performed for 
each criterion separately and the corresponding regions (kp, ki) 
are found. The common region satisfies both criteria. The 
results are shown in Figures 9 to 11. From these Figures it is 
concluded that for each Ts the common area satisfying both 
criteria is much narrower compared with the one satisfying 
each criterion. Additionally this common segment is located to 
small values of kp. Generally an increase of Ts results in a 
decrease of both kp and ki. 

 

 

Figure 9. Plots of (kp, ki) for Ts = 30 min and kd=0. 
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Figure 10. Plots of (kp, ki) for Ts = 60 min and kd=0. 

 

Figure 11. Plots of (kp, ki) for Ts = 120 min and kd=0. 

 

D. Other Digital Implementations of the PID Controller 

The digital implementation of the analog PID described by 
[6] includes backward differences of both integral and 
derivative actions. There are several other digital 
implementations as Astrom et al. analyzed [1]. Two of them 
have been investigated as concerns the impact of the sampling 
period on the controller robustness and performance: (i) 
forward differences (ii) Tustin approximation which is also 
known as bilinear or trapezoidal approximation. Both 
implementations have been applied to the integral term of the 
PID. The derivative action continued to be approximated by 
backward difference. 

The digital PID with the forward difference of the integral 
term is described by (9) in time domain. Its Laplace transform 
is provided by (10):  

%𝐺𝑘 − %𝐺𝑘−1 = 𝑘𝑝 𝑒𝑘 − 𝑒𝑘−1 + 𝑘𝑖𝑒𝑘−1𝑇𝑠

+
𝑘𝑑

𝑇𝑠
 𝑒𝑘 + 𝑒𝑘−2 − 2𝑒𝑘                               (9) 

𝐺𝐶 =
%𝐺

𝑒
= 𝑘𝑝 +

𝑘𝑖 ∙ 𝑇𝑠 ∙ 𝑒𝑥𝑝 −𝑇𝑠 ∙ 𝑠 

1 − 𝑒𝑥𝑝 −𝑇𝑠 ∙ 𝑠 
+

𝑘𝑑

𝑇𝑠

∙  1 − 𝑒𝑥𝑝 −𝑇𝑠 ∙ 𝑠                                    (10) 

The corresponding expressions of the Tustin approximation 
are given by (11), (12). 

%𝐺𝑘 − %𝐺𝑘−1 = 𝑘𝑝 𝑒𝑘 − 𝑒𝑘−1 + 𝑘𝑖

 𝑒𝑘 + 𝑒𝑘−1 

2
𝑇𝑠

+
𝑘𝑑

𝑇𝑠
 𝑒𝑘 + 𝑒𝑘−2 − 2𝑒𝑘                             (11) 

𝐺𝐶 =
%𝐺

𝑒
= 𝑘𝑝 +

𝑘𝑖 ∙ 𝑇𝑠
2

∙
1 + 𝑒𝑥𝑝 −𝑇𝑠 ∙ 𝑠 

1 − 𝑒𝑥𝑝 −𝑇𝑠 ∙ 𝑠 
+

𝑘𝑑

𝑇𝑠

∙  1 − 𝑒𝑥𝑝 −𝑇𝑠 ∙ 𝑠                                    (12) 

Using these two implementations the controller has been 
designed satisfying the maximum sensitivity criterion, for 
1.45≤Ms≤1.55, kd=0 and Ts ranging from 1 min to 120 min. 
The results are shown in Figures 12, 13 and the comparison has 
to be made with the ones shown in Figure 6. 

  

 

Figure 12. Plots of (kp, ki) for forward difference of integral part 

 

Figure 13. Plots of (kp, ki) for Tustin approximation of integral part 

The following conclusions can be extracted from Figures 6, 
12, 13.  

 For high frequency sampling all the three 
approximations give similar (kp, ki) zones of equal Ms  

 The general trend is that an increase of Ts, causes a 
decrease ki for the same kp. 

 The behavior of the three approximations differs 
significantly, i.e. if a PID has been parameterized using 
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a certain digital form, the robustness does not remain 
the same in case the same gains are applied to another 
digital PID implementation.   

 For Ts ≥ 30 min, the function between kp, ki is not the 
same for the three approximations. In the backward 
approximations a rise of kp, causes a decrease of ki. The 
reverse function appears in the forward approximation. 
The trapezoidal rule shows an intermediate behaviour, 
between the other two. 

CONCUSIONS  

An investigation of the impact of the sampling period on 
the design and parameterization of a digital PID controller has 
been attempted using the frequency domain. An industrial 
process of high importance as concerns the quality of the 
products has been chosen: The regulation of the cement 
sulphates in the cement mill outlet. Three different 
approximations have been utilized for the integral action of the 
controller: The backward, forward and Tustin approximations.  

In case the design should satisfy one robustness constraint, 
the maximum sensitivity, Ms, has been chosen as such. In this 
case for the same Ms and differential gain, a rise of the 
sampling period leads to a decrease of the integral gain for all 
the three approximations. An increase of the differential gain 
has not strong impact on the (kp, ki) region satisfying the Ms 
requirement when the backward difference is utilized and 
Ts≥60 min. The function between kp and ki, for the same 
sampling period differs for the three approximations studied. 
Thus the way the PID is implemented digitally plays an 
important role too. 

If the design satisfies two criteria simultaneously, 
maximum sensitivity and phase margin in the current study, 
then the (kp, ki) zone becomes more narrow. An increase of Ts, 

has not a severe influence on the ki values but causes a slight 
drop of the proportional gains. 

A further future study using the z-transform and process 
simulations can extend the results of the current study and 
generalize them to a variety of other processes.   
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